صور مختلف معادلات دیفرانسیل
معادله دیفرانسیل مرتبه اول از درجه اول را همواره میتوان به صورت زیر در آورد که در آن M و N معرف توابعی از x و y هستند.
در معادله فوق هرگاه M فقط تابعی از x و N فقط تابعی از y باشد. به صورت معادله جدایی پذیر مرتبه اول است. در این صورت با انتگرال گیری از هر جمله جواب بدست میآید. یعنی:
معادله دیفرانسیل همگن
گاه معادله دیفرانسیلی را که متغیرهایش جدایی پذیر نیستند با تعویض متغیر میتوان به معادلهای تبدیل کرد که متغیرهایش جدایی پذیر باشند، چنین معادلهای را همگن مینامند. معادله دیفرانسیل خطی مرتبه اول را همیشه میتوان به صورت متعارف زیر در آورد که در آن P و Q توابعی از x هستند.
معادله را که بتوان آن را به صورت:
نوشت و دارای ویژگی زیر باشد کامل نامیده میشود. زیرا طرف چپ آن یک دیفرانسیل کامل است.
معادلات دیفرانسیل مرتبه دوم
یک معادله دیفرانسیل مرتبه دوم در حالت کلی به صورت زیر است:
این گونه معادلات را معمولا با یک متغیر مناسب مثل dy/dx = p به معادلات دیفرانسیل نوع اول تبدیل کرد و با جاگذاری در معادله مربوط به روش معادلات دیفرانسیل مرتبه اول حل کرد.
معادلات دیفرانسیل خطی
معادله دیفرانسیل
را که در آن توابع ، ، ... ، و بر بازه I پیوسته بوده و (an(x هرگز صفر نباشد یک معادله دیفرانسیل خطی مرتبه n ام مینامیم. که البته اگر در تعریف فوق (F(x مساوی صفر باشد، معادله دیفرانسیل D برای مشتق توابع معرفی میشود، سپس با نوشتن معادله کمکی p(r) = 0 و پیدا کردن صفرهای معادله (p(r جواب معادله همگن را پیدا میکنیم. در صورت ناهمگن بودن علاوه بر عملیات فوق ، جوابهای معادله ناهمگن را با شیوه های خاصی را پیدا کرده به جواب بالا اضافه میکنیم.
حل معادلات دیفرانسیلی خطی مرتبه n ام به توسط سریهای توانی
معادله دیفرانسیل
را در نظر میگیریم که در آن x0 نقطه منفرد معادلات در این صورت با تغییر متغیر زیر به حل معادله میپردازیم:
همین طور با جاگذاری سری مربوط به (F(x و تجریه مناسب و مساوی قرار دادن دو طرف عبارت به حل معادله میپردازیم.(تدریس خصوصی معادلات دیفرانسیل دراصفهان .موسسه گوهر تخصصی ترین تدریس خصوصی دراصفهان .خ حافظ ۳۲۲۲۶۰۶۵-۰۹۱۰۳۵۷۵۷۴۴)